// karo.cpp : This file contains the 'main' function. Program execution begins and ends there. // //#define GLEW_STATIC #include #include #include #include #include #include #include #include //#include #include #include #include //#include #include #include #include #include "camera.hpp" using namespace physx; struct Vertex { glm::vec3 pos; glm::vec3 color; }; static const char* s_vs_src = R"GLSL( #version 330 core layout (location = 0) in vec3 a_pos; layout (location = 1) in vec3 a_color; out vec3 u_color; uniform mat4 u_mvp; void main() { gl_Position = u_mvp * vec4(a_pos, 1.0); u_color = a_color; } )GLSL"; static const char* s_fs_src = R"GLSL( #version 330 core in vec3 u_color; out vec4 o_color; void main() { o_color = vec4(u_color, 1.0); } )GLSL"; static void CheckShaderCompileErrors(GLuint shader) { GLint success; GLchar infoLog[512]; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(shader, 512, NULL, infoLog); std::cerr << "Shader compilation failed: " << infoLog << std::endl; exit(1); } } static void CheckProgramLinkErrors(GLuint program) { GLint success; GLchar infoLog[512]; glGetProgramiv(program, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(program, 512, NULL, infoLog); std::cerr << "Program link failed: " << infoLog << std::endl; exit(1); } } enum ContactGroup { CG_NONE = 0, CG_BOX = (1 << 1), CG_FLOOR = (1 << 2), }; //PxFilterFlags FilterShaderExample( // PxFilterObjectAttributes attributes0, PxFilterData filterData0, // PxFilterObjectAttributes attributes1, PxFilterData filterData1, // PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize) //{ // // let triggers through // if (PxFilterObjectIsTrigger(attributes0) || PxFilterObjectIsTrigger(attributes1)) // { // pairFlags = PxPairFlag::eTRIGGER_DEFAULT; // return PxFilterFlag::eDEFAULT; // } // // generate contacts for all that were not filtered above // pairFlags = PxPairFlag::eCONTACT_DEFAULT; // // // trigger the contact callback for pairs (A,B) where // // the filtermask of A contains the ID of B and vice versa. // if ((filterData0.word0 & filterData1.word1) && (filterData1.word0 & filterData0.word1)) { // pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND; // return PxFilterFlag::eDEFAULT; // // } // // return PxFilterFlag::eSUPPRESS; //} //void SetupFiltering(PxShape* shape, PxU32 filterGroup, PxU32 filterMask, PxU32 w3) //{ // PxFilterData filterData; // filterData.word0 = filterGroup; // word0 = own ID // filterData.word1 = filterMask; // word1 = ID mask to filter pairs that trigger a contact callback // filterData.word3 = w3; // shape->setSimulationFilterData(filterData); //} //Data structure for quick setup of scene queries for suspension queries. class VehicleSceneQueryData { public: VehicleSceneQueryData(); ~VehicleSceneQueryData(); //Allocate scene query data for up to maxNumVehicles and up to maxNumWheelsPerVehicle with numVehiclesInBatch per batch query. static VehicleSceneQueryData* allocate (const PxU32 maxNumVehicles, const PxU32 maxNumWheelsPerVehicle, const PxU32 maxNumHitPointsPerWheel, const PxU32 numVehiclesInBatch, PxBatchQueryPreFilterShader preFilterShader, PxBatchQueryPostFilterShader postFilterShader, PxAllocatorCallback& allocator); //Free allocated buffers. void free(PxAllocatorCallback& allocator); //Create a PxBatchQuery instance that will be used for a single specified batch. static PxBatchQuery* setUpBatchedSceneQuery(const PxU32 batchId, const VehicleSceneQueryData& vehicleSceneQueryData, PxScene* scene); //Return an array of scene query results for a single specified batch. PxRaycastQueryResult* getRaycastQueryResultBuffer(const PxU32 batchId); //Return an array of scene query results for a single specified batch. PxSweepQueryResult* getSweepQueryResultBuffer(const PxU32 batchId); //Get the number of scene query results that have been allocated for a single batch. PxU32 getQueryResultBufferSize() const; private: //Number of queries per batch PxU32 mNumQueriesPerBatch; //Number of hit results per query PxU32 mNumHitResultsPerQuery; //One result for each wheel. PxRaycastQueryResult* mRaycastResults; PxSweepQueryResult* mSweepResults; //One hit for each wheel. PxRaycastHit* mRaycastHitBuffer; PxSweepHit* mSweepHitBuffer; //Filter shader used to filter drivable and non-drivable surfaces PxBatchQueryPreFilterShader mPreFilterShader; //Filter shader used to reject hit shapes that initially overlap sweeps. PxBatchQueryPostFilterShader mPostFilterShader; }; VehicleSceneQueryData::VehicleSceneQueryData() : mNumQueriesPerBatch(0), mNumHitResultsPerQuery(0), mRaycastResults(NULL), mRaycastHitBuffer(NULL), mPreFilterShader(NULL), mPostFilterShader(NULL) { } VehicleSceneQueryData::~VehicleSceneQueryData() { } VehicleSceneQueryData* VehicleSceneQueryData::allocate (const PxU32 maxNumVehicles, const PxU32 maxNumWheelsPerVehicle, const PxU32 maxNumHitPointsPerWheel, const PxU32 numVehiclesInBatch, PxBatchQueryPreFilterShader preFilterShader, PxBatchQueryPostFilterShader postFilterShader, PxAllocatorCallback& allocator) { const PxU32 sqDataSize = ((sizeof(VehicleSceneQueryData) + 15) & ~15); const PxU32 maxNumWheels = maxNumVehicles * maxNumWheelsPerVehicle; const PxU32 raycastResultSize = ((sizeof(PxRaycastQueryResult) * maxNumWheels + 15) & ~15); const PxU32 sweepResultSize = ((sizeof(PxSweepQueryResult) * maxNumWheels + 15) & ~15); const PxU32 maxNumHitPoints = maxNumWheels * maxNumHitPointsPerWheel; const PxU32 raycastHitSize = ((sizeof(PxRaycastHit) * maxNumHitPoints + 15) & ~15); const PxU32 sweepHitSize = ((sizeof(PxSweepHit) * maxNumHitPoints + 15) & ~15); const PxU32 size = sqDataSize + raycastResultSize + raycastHitSize + sweepResultSize + sweepHitSize; PxU8* buffer = static_cast(allocator.allocate(size, NULL, NULL, 0)); VehicleSceneQueryData* sqData = new(buffer) VehicleSceneQueryData(); sqData->mNumQueriesPerBatch = numVehiclesInBatch * maxNumWheelsPerVehicle; sqData->mNumHitResultsPerQuery = maxNumHitPointsPerWheel; buffer += sqDataSize; sqData->mRaycastResults = reinterpret_cast(buffer); buffer += raycastResultSize; sqData->mRaycastHitBuffer = reinterpret_cast(buffer); buffer += raycastHitSize; sqData->mSweepResults = reinterpret_cast(buffer); buffer += sweepResultSize; sqData->mSweepHitBuffer = reinterpret_cast(buffer); buffer += sweepHitSize; for (PxU32 i = 0; i < maxNumWheels; i++) { new(sqData->mRaycastResults + i) PxRaycastQueryResult(); new(sqData->mSweepResults + i) PxSweepQueryResult(); } for (PxU32 i = 0; i < maxNumHitPoints; i++) { new(sqData->mRaycastHitBuffer + i) PxRaycastHit(); new(sqData->mSweepHitBuffer + i) PxSweepHit(); } sqData->mPreFilterShader = preFilterShader; sqData->mPostFilterShader = postFilterShader; return sqData; } void VehicleSceneQueryData::free(PxAllocatorCallback& allocator) { allocator.deallocate(this); } PxBatchQuery* VehicleSceneQueryData::setUpBatchedSceneQuery(const PxU32 batchId, const VehicleSceneQueryData& vehicleSceneQueryData, PxScene* scene) { const PxU32 maxNumQueriesInBatch = vehicleSceneQueryData.mNumQueriesPerBatch; const PxU32 maxNumHitResultsInBatch = vehicleSceneQueryData.mNumQueriesPerBatch * vehicleSceneQueryData.mNumHitResultsPerQuery; PxBatchQueryDesc sqDesc(maxNumQueriesInBatch, maxNumQueriesInBatch, 0); sqDesc.queryMemory.userRaycastResultBuffer = vehicleSceneQueryData.mRaycastResults + batchId * maxNumQueriesInBatch; sqDesc.queryMemory.userRaycastTouchBuffer = vehicleSceneQueryData.mRaycastHitBuffer + batchId * maxNumHitResultsInBatch; sqDesc.queryMemory.raycastTouchBufferSize = maxNumHitResultsInBatch; sqDesc.queryMemory.userSweepResultBuffer = vehicleSceneQueryData.mSweepResults + batchId * maxNumQueriesInBatch; sqDesc.queryMemory.userSweepTouchBuffer = vehicleSceneQueryData.mSweepHitBuffer + batchId * maxNumHitResultsInBatch; sqDesc.queryMemory.sweepTouchBufferSize = maxNumHitResultsInBatch; sqDesc.preFilterShader = vehicleSceneQueryData.mPreFilterShader; sqDesc.postFilterShader = vehicleSceneQueryData.mPostFilterShader; return scene->createBatchQuery(sqDesc); } PxRaycastQueryResult* VehicleSceneQueryData::getRaycastQueryResultBuffer(const PxU32 batchId) { return (mRaycastResults + batchId * mNumQueriesPerBatch); } PxSweepQueryResult* VehicleSceneQueryData::getSweepQueryResultBuffer(const PxU32 batchId) { return (mSweepResults + batchId * mNumQueriesPerBatch); } PxU32 VehicleSceneQueryData::getQueryResultBufferSize() const { return mNumQueriesPerBatch; } static std::vector s_draw_lines; static std::vector s_draw_points; static PxDefaultErrorCallback gDefaultErrorCallback; static PxDefaultAllocator gDefaultAllocatorCallback; static PxFoundation* s_foundation; static PxPhysics* s_physics; static PxCooking* s_cooking; static PxScene* s_scene; static PxDefaultCpuDispatcher* s_cpu_dispatcher; static PxMaterial* s_material; static PxRigidDynamic* s_box1; VehicleSceneQueryData* gVehicleSceneQueryData = NULL; PxBatchQuery* gBatchQuery = NULL; PxVehicleDrivableSurfaceToTireFrictionPairs* gFrictionPairs = NULL; PxVehicleDrive4W* gVehicle4W = NULL; enum { DRIVABLE_SURFACE = 0xffff0000, UNDRIVABLE_SURFACE = 0x0000ffff }; //EngineDriveVehicle gVehicle; void setupDrivableSurface(PxFilterData& filterData) { filterData.word3 = static_cast(DRIVABLE_SURFACE); } void setupNonDrivableSurface(PxFilterData& filterData) { filterData.word3 = UNDRIVABLE_SURFACE; } PxQueryHitType::Enum WheelSceneQueryPreFilterBlocking (PxFilterData filterData0, PxFilterData filterData1, const void* constantBlock, PxU32 constantBlockSize, PxHitFlags& queryFlags) { //filterData0 is the vehicle suspension query. //filterData1 is the shape potentially hit by the query. PX_UNUSED(filterData0); PX_UNUSED(constantBlock); PX_UNUSED(constantBlockSize); PX_UNUSED(queryFlags); return ((0 == (filterData1.word3 & DRIVABLE_SURFACE)) ? PxQueryHitType::eNONE : PxQueryHitType::eBLOCK); } //Drivable surface types. enum { SURFACE_TYPE_TARMAC, MAX_NUM_SURFACE_TYPES }; //Tire types. enum { TIRE_TYPE_NORMAL = 0, TIRE_TYPE_WORN, MAX_NUM_TIRE_TYPES }; //Tire model friction for each combination of drivable surface type and tire type. static PxF32 gTireFrictionMultipliers[MAX_NUM_SURFACE_TYPES][MAX_NUM_TIRE_TYPES] = { //NORMAL, WORN {30.0f, 0.1f}//TARMAC }; PxVehicleDrivableSurfaceToTireFrictionPairs* createFrictionPairs(const PxMaterial* defaultMaterial) { PxVehicleDrivableSurfaceType surfaceTypes[1]; surfaceTypes[0].mType = SURFACE_TYPE_TARMAC; const PxMaterial* surfaceMaterials[1]; surfaceMaterials[0] = defaultMaterial; PxVehicleDrivableSurfaceToTireFrictionPairs* surfaceTirePairs = PxVehicleDrivableSurfaceToTireFrictionPairs::allocate(MAX_NUM_TIRE_TYPES, MAX_NUM_SURFACE_TYPES); surfaceTirePairs->setup(MAX_NUM_TIRE_TYPES, MAX_NUM_SURFACE_TYPES, surfaceMaterials, surfaceTypes); for (PxU32 i = 0; i < MAX_NUM_SURFACE_TYPES; i++) { for (PxU32 j = 0; j < MAX_NUM_TIRE_TYPES; j++) { surfaceTirePairs->setTypePairFriction(i, j, gTireFrictionMultipliers[i][j]); } } return surfaceTirePairs; } enum { COLLISION_FLAG_GROUND = 1 << 0, COLLISION_FLAG_WHEEL = 1 << 1, COLLISION_FLAG_CHASSIS = 1 << 2, COLLISION_FLAG_OBSTACLE = 1 << 3, COLLISION_FLAG_DRIVABLE_OBSTACLE = 1 << 4, COLLISION_FLAG_GROUND_AGAINST = COLLISION_FLAG_CHASSIS | COLLISION_FLAG_OBSTACLE | COLLISION_FLAG_DRIVABLE_OBSTACLE, COLLISION_FLAG_WHEEL_AGAINST = COLLISION_FLAG_WHEEL | COLLISION_FLAG_CHASSIS | COLLISION_FLAG_OBSTACLE, COLLISION_FLAG_CHASSIS_AGAINST = COLLISION_FLAG_GROUND | COLLISION_FLAG_WHEEL | COLLISION_FLAG_CHASSIS | COLLISION_FLAG_OBSTACLE | COLLISION_FLAG_DRIVABLE_OBSTACLE, COLLISION_FLAG_OBSTACLE_AGAINST = COLLISION_FLAG_GROUND | COLLISION_FLAG_WHEEL | COLLISION_FLAG_CHASSIS | COLLISION_FLAG_OBSTACLE | COLLISION_FLAG_DRIVABLE_OBSTACLE, COLLISION_FLAG_DRIVABLE_OBSTACLE_AGAINST = COLLISION_FLAG_GROUND | COLLISION_FLAG_CHASSIS | COLLISION_FLAG_OBSTACLE | COLLISION_FLAG_DRIVABLE_OBSTACLE }; PxRigidStatic* createDrivablePlane(const PxFilterData& simFilterData, PxMaterial* material, PxPhysics* physics) { //Add a plane to the scene. PxRigidStatic* groundPlane = PxCreatePlane(*physics, PxPlane(0, 1, 0, 0), *material); //Get the plane shape so we can set query and simulation filter data. PxShape* shapes[1]; groundPlane->getShapes(shapes, 1); //Set the query filter data of the ground plane so that the vehicle raycasts can hit the ground. PxFilterData qryFilterData; setupDrivableSurface(qryFilterData); shapes[0]->setQueryFilterData(qryFilterData); //Set the simulation filter data of the ground plane so that it collides with the chassis of a vehicle but not the wheels. shapes[0]->setSimulationFilterData(simFilterData); return groundPlane; } //struct ActorUserData //{ // ActorUserData() // : vehicle(NULL), // actor(NULL) // { // } // // const PxVehicleWheels* vehicle; // const PxActor* actor; //}; // //struct ShapeUserData //{ // ShapeUserData() // : isWheel(false), // wheelId(0xffffffff) // { // } // // bool isWheel; // PxU32 wheelId; //}; struct VehicleDesc { VehicleDesc() : chassisMass(0.0f), chassisDims(PxVec3(0.0f, 0.0f, 0.0f)), chassisMOI(PxVec3(0.0f, 0.0f, 0.0f)), chassisCMOffset(PxVec3(0.0f, 0.0f, 0.0f)), chassisMaterial(NULL), wheelMass(0.0f), wheelWidth(0.0f), wheelRadius(0.0f), wheelMOI(0.0f), wheelMaterial(NULL) //actorUserData(NULL), //shapeUserDatas(NULL) { } PxF32 chassisMass; PxVec3 chassisDims; PxVec3 chassisMOI; PxVec3 chassisCMOffset; PxMaterial* chassisMaterial; PxFilterData chassisSimFilterData; //word0 = collide type, word1 = collide against types, word2 = PxPairFlags PxF32 wheelMass; PxF32 wheelWidth; PxF32 wheelRadius; PxF32 wheelMOI; PxMaterial* wheelMaterial; PxU32 numWheels; PxFilterData wheelSimFilterData; //word0 = collide type, word1 = collide against types, word2 = PxPairFlags //ActorUserData* actorUserData; //ShapeUserData* shapeUserDatas; }; VehicleDesc initVehicleDesc() { //Set up the chassis mass, dimensions, moment of inertia, and center of mass offset. //The moment of inertia is just the moment of inertia of a cuboid but modified for easier steering. //Center of mass offset is 0.65m above the base of the chassis and 0.25m towards the front. const PxF32 chassisMass = 1500.0f; const PxVec3 chassisDims(2.5f, 2.0f, 5.0f); const PxVec3 chassisMOI ((chassisDims.y * chassisDims.y + chassisDims.z * chassisDims.z) * chassisMass / 12.0f, (chassisDims.x * chassisDims.x + chassisDims.z * chassisDims.z) * 0.8f * chassisMass / 12.0f, (chassisDims.x * chassisDims.x + chassisDims.y * chassisDims.y) * chassisMass / 12.0f); const PxVec3 chassisCMOffset(0.0f, -chassisDims.y * 0.5f + 0.65f, 0.25f); //Set up the wheel mass, radius, width, moment of inertia, and number of wheels. //Moment of inertia is just the moment of inertia of a cylinder. const PxF32 wheelMass = 20.0f; const PxF32 wheelRadius = 0.5f; const PxF32 wheelWidth = 0.4f; const PxF32 wheelMOI = 0.5f * wheelMass * wheelRadius * wheelRadius; const PxU32 nbWheels = 4; VehicleDesc vehicleDesc; vehicleDesc.chassisMass = chassisMass; vehicleDesc.chassisDims = chassisDims; vehicleDesc.chassisMOI = chassisMOI; vehicleDesc.chassisCMOffset = chassisCMOffset; vehicleDesc.chassisMaterial = s_material; vehicleDesc.chassisSimFilterData = PxFilterData(COLLISION_FLAG_CHASSIS, COLLISION_FLAG_CHASSIS_AGAINST, 0, 0); vehicleDesc.wheelMass = wheelMass; vehicleDesc.wheelRadius = wheelRadius; vehicleDesc.wheelWidth = wheelWidth; vehicleDesc.wheelMOI = wheelMOI; vehicleDesc.numWheels = nbWheels; vehicleDesc.wheelMaterial = s_material; vehicleDesc.wheelSimFilterData = PxFilterData(COLLISION_FLAG_WHEEL, COLLISION_FLAG_WHEEL_AGAINST, 0, 0); return vehicleDesc; } static PxConvexMesh* createConvexMesh(const PxVec3* verts, const PxU32 numVerts, PxPhysics& physics, PxCooking& cooking) { // Create descriptor for convex mesh PxConvexMeshDesc convexDesc; convexDesc.points.count = numVerts; convexDesc.points.stride = sizeof(PxVec3); convexDesc.points.data = verts; convexDesc.flags = PxConvexFlag::eCOMPUTE_CONVEX; PxConvexMesh* convexMesh = NULL; PxDefaultMemoryOutputStream buf; if (cooking.cookConvexMesh(convexDesc, buf)) { PxDefaultMemoryInputData id(buf.getData(), buf.getSize()); convexMesh = physics.createConvexMesh(id); } return convexMesh; } PxConvexMesh* createWheelMesh(const PxF32 width, const PxF32 radius, PxPhysics& physics, PxCooking& cooking) { PxVec3 points[2 * 16]; for (PxU32 i = 0; i < 16; i++) { const PxF32 cosTheta = PxCos(i * PxPi * 2.0f / 16.0f); const PxF32 sinTheta = PxSin(i * PxPi * 2.0f / 16.0f); const PxF32 y = radius * cosTheta; const PxF32 z = radius * sinTheta; points[2 * i + 0] = PxVec3(-width / 2.0f, y, z); points[2 * i + 1] = PxVec3(+width / 2.0f, y, z); } return createConvexMesh(points, 32, physics, cooking); } PxConvexMesh* createChassisMesh(const PxVec3 dims, PxPhysics& physics, PxCooking& cooking) { const PxF32 x = dims.x * 0.5f; const PxF32 y = dims.y * 0.5f; const PxF32 z = dims.z * 0.5f; PxVec3 verts[8] = { PxVec3(x,y,-z), PxVec3(x,y,z), PxVec3(x,-y,z), PxVec3(x,-y,-z), PxVec3(-x,y,-z), PxVec3(-x,y,z), PxVec3(-x,-y,z), PxVec3(-x,-y,-z) }; return createConvexMesh(verts, 8, physics, cooking); } PxRigidDynamic* createVehicleActor (const PxVehicleChassisData& chassisData, PxMaterial** wheelMaterials, PxConvexMesh** wheelConvexMeshes, const PxU32 numWheels, const PxFilterData& wheelSimFilterData, PxMaterial** chassisMaterials, PxConvexMesh** chassisConvexMeshes, const PxU32 numChassisMeshes, const PxFilterData& chassisSimFilterData, PxPhysics& physics) { //We need a rigid body actor for the vehicle. //Don't forget to add the actor to the scene after setting up the associated vehicle. PxRigidDynamic* vehActor = physics.createRigidDynamic(PxTransform(PxIdentity)); //Wheel and chassis query filter data. //Optional: cars don't drive on other cars. PxFilterData wheelQryFilterData; setupNonDrivableSurface(wheelQryFilterData); PxFilterData chassisQryFilterData; setupNonDrivableSurface(chassisQryFilterData); //Add all the wheel shapes to the actor. for (PxU32 i = 0; i < numWheels; i++) { PxConvexMeshGeometry geom(wheelConvexMeshes[i]); PxShape* wheelShape = PxRigidActorExt::createExclusiveShape(*vehActor, geom, *wheelMaterials[i]); wheelShape->setQueryFilterData(wheelQryFilterData); wheelShape->setSimulationFilterData(wheelSimFilterData); wheelShape->setLocalPose(PxTransform(PxIdentity)); } //Add the chassis shapes to the actor. for (PxU32 i = 0; i < numChassisMeshes; i++) { PxShape* chassisShape = PxRigidActorExt::createExclusiveShape(*vehActor, PxConvexMeshGeometry(chassisConvexMeshes[i]), *chassisMaterials[i]); chassisShape->setQueryFilterData(chassisQryFilterData); chassisShape->setSimulationFilterData(chassisSimFilterData); chassisShape->setLocalPose(PxTransform(PxIdentity)); } vehActor->setMass(chassisData.mMass); vehActor->setMassSpaceInertiaTensor(chassisData.mMOI); vehActor->setCMassLocalPose(PxTransform(chassisData.mCMOffset, PxQuat(PxIdentity))); return vehActor; } void computeWheelCenterActorOffsets4W(const PxF32 wheelFrontZ, const PxF32 wheelRearZ, const PxVec3& chassisDims, const PxF32 wheelWidth, const PxF32 wheelRadius, const PxU32 numWheels, PxVec3* wheelCentreOffsets) { //chassisDims.z is the distance from the rear of the chassis to the front of the chassis. //The front has z = 0.5*chassisDims.z and the rear has z = -0.5*chassisDims.z. //Compute a position for the front wheel and the rear wheel along the z-axis. //Compute the separation between each wheel along the z-axis. const PxF32 numLeftWheels = numWheels / 2.0f; const PxF32 deltaZ = (wheelFrontZ - wheelRearZ) / (numLeftWheels - 1.0f); //Set the outside of the left and right wheels to be flush with the chassis. //Set the top of the wheel to be just touching the underside of the chassis. //Begin by setting the rear-left/rear-right/front-left,front-right wheels. wheelCentreOffsets[PxVehicleDrive4WWheelOrder::eREAR_LEFT] = PxVec3((-chassisDims.x + wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + 0 * deltaZ * 0.5f); wheelCentreOffsets[PxVehicleDrive4WWheelOrder::eREAR_RIGHT] = PxVec3((+chassisDims.x - wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + 0 * deltaZ * 0.5f); wheelCentreOffsets[PxVehicleDrive4WWheelOrder::eFRONT_LEFT] = PxVec3((-chassisDims.x + wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + (numLeftWheels - 1) * deltaZ); wheelCentreOffsets[PxVehicleDrive4WWheelOrder::eFRONT_RIGHT] = PxVec3((+chassisDims.x - wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + (numLeftWheels - 1) * deltaZ); //Set the remaining wheels. for (PxU32 i = 2, wheelCount = 4; i < numWheels - 2; i += 2, wheelCount += 2) { wheelCentreOffsets[wheelCount + 0] = PxVec3((-chassisDims.x + wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + i * deltaZ * 0.5f); wheelCentreOffsets[wheelCount + 1] = PxVec3((+chassisDims.x - wheelWidth) * 0.5f, -(chassisDims.y / 2 + wheelRadius), wheelRearZ + i * deltaZ * 0.5f); } } void setupWheelsSimulationData (const PxF32 wheelMass, const PxF32 wheelMOI, const PxF32 wheelRadius, const PxF32 wheelWidth, const PxU32 numWheels, const PxVec3* wheelCenterActorOffsets, const PxVec3& chassisCMOffset, const PxF32 chassisMass, PxVehicleWheelsSimData* wheelsSimData) { //Set up the wheels. PxVehicleWheelData wheels[PX_MAX_NB_WHEELS]; { //Set up the wheel data structures with mass, moi, radius, width. for (PxU32 i = 0; i < numWheels; i++) { wheels[i].mMass = wheelMass; wheels[i].mMOI = wheelMOI; wheels[i].mRadius = wheelRadius; wheels[i].mWidth = wheelWidth; wheels[i].mMaxBrakeTorque = 2000.0f; } //Enable the handbrake for the rear wheels only. wheels[PxVehicleDrive4WWheelOrder::eREAR_LEFT].mMaxHandBrakeTorque = 4000.0f; wheels[PxVehicleDrive4WWheelOrder::eREAR_RIGHT].mMaxHandBrakeTorque = 4000.0f; //Enable steering for the front wheels only. wheels[PxVehicleDrive4WWheelOrder::eFRONT_LEFT].mMaxSteer = PxPi * 0.3333f; wheels[PxVehicleDrive4WWheelOrder::eFRONT_RIGHT].mMaxSteer = PxPi * 0.3333f; } //Set up the tires. PxVehicleTireData tires[PX_MAX_NB_WHEELS]; { //Set up the tires. for (PxU32 i = 0; i < numWheels; i++) { tires[i].mType = TIRE_TYPE_NORMAL; } } //Set up the suspensions PxVehicleSuspensionData suspensions[PX_MAX_NB_WHEELS]; { //Compute the mass supported by each suspension spring. PxF32 suspSprungMasses[PX_MAX_NB_WHEELS]; PxVehicleComputeSprungMasses (numWheels, wheelCenterActorOffsets, chassisCMOffset, chassisMass, 1, suspSprungMasses); //Set the suspension data. for (PxU32 i = 0; i < numWheels; i++) { suspensions[i].mMaxCompression = 0.3f; suspensions[i].mMaxDroop = 0.1f; suspensions[i].mSpringStrength = 35000.0f; suspensions[i].mSpringDamperRate = 4500.0f; suspensions[i].mSprungMass = suspSprungMasses[i]; } //Set the camber angles. const PxF32 camberAngleAtRest = 0.0; const PxF32 camberAngleAtMaxDroop = 0.01f; const PxF32 camberAngleAtMaxCompression = -0.01f; for (PxU32 i = 0; i < numWheels; i += 2) { suspensions[i + 0].mCamberAtRest = camberAngleAtRest; suspensions[i + 1].mCamberAtRest = -camberAngleAtRest; suspensions[i + 0].mCamberAtMaxDroop = camberAngleAtMaxDroop; suspensions[i + 1].mCamberAtMaxDroop = -camberAngleAtMaxDroop; suspensions[i + 0].mCamberAtMaxCompression = camberAngleAtMaxCompression; suspensions[i + 1].mCamberAtMaxCompression = -camberAngleAtMaxCompression; } } //Set up the wheel geometry. PxVec3 suspTravelDirections[PX_MAX_NB_WHEELS]; PxVec3 wheelCentreCMOffsets[PX_MAX_NB_WHEELS]; PxVec3 suspForceAppCMOffsets[PX_MAX_NB_WHEELS]; PxVec3 tireForceAppCMOffsets[PX_MAX_NB_WHEELS]; { //Set the geometry data. for (PxU32 i = 0; i < numWheels; i++) { //Vertical suspension travel. suspTravelDirections[i] = PxVec3(0, -1, 0); //Wheel center offset is offset from rigid body center of mass. wheelCentreCMOffsets[i] = wheelCenterActorOffsets[i] - chassisCMOffset; //Suspension force application point 0.3 metres below //rigid body center of mass. suspForceAppCMOffsets[i] = PxVec3(wheelCentreCMOffsets[i].x, -0.3f, wheelCentreCMOffsets[i].z); //Tire force application point 0.3 metres below //rigid body center of mass. tireForceAppCMOffsets[i] = PxVec3(wheelCentreCMOffsets[i].x, -0.3f, wheelCentreCMOffsets[i].z); } } //Set up the filter data of the raycast that will be issued by each suspension. PxFilterData qryFilterData; setupNonDrivableSurface(qryFilterData); //Set the wheel, tire and suspension data. //Set the geometry data. //Set the query filter data for (PxU32 i = 0; i < numWheels; i++) { wheelsSimData->setWheelData(i, wheels[i]); wheelsSimData->setTireData(i, tires[i]); wheelsSimData->setSuspensionData(i, suspensions[i]); wheelsSimData->setSuspTravelDirection(i, suspTravelDirections[i]); wheelsSimData->setWheelCentreOffset(i, wheelCentreCMOffsets[i]); wheelsSimData->setSuspForceAppPointOffset(i, suspForceAppCMOffsets[i]); wheelsSimData->setTireForceAppPointOffset(i, tireForceAppCMOffsets[i]); wheelsSimData->setSceneQueryFilterData(i, qryFilterData); wheelsSimData->setWheelShapeMapping(i, PxI32(i)); } //Add a front and rear anti-roll bar PxVehicleAntiRollBarData barFront; barFront.mWheel0 = PxVehicleDrive4WWheelOrder::eFRONT_LEFT; barFront.mWheel1 = PxVehicleDrive4WWheelOrder::eFRONT_RIGHT; barFront.mStiffness = 10000.0f; wheelsSimData->addAntiRollBarData(barFront); PxVehicleAntiRollBarData barRear; barRear.mWheel0 = PxVehicleDrive4WWheelOrder::eREAR_LEFT; barRear.mWheel1 = PxVehicleDrive4WWheelOrder::eREAR_RIGHT; barRear.mStiffness = 10000.0f; wheelsSimData->addAntiRollBarData(barRear); } //void configureUserData(PxVehicleWheels* vehicle, ActorUserData* actorUserData, ShapeUserData* shapeUserDatas) //{ // if (actorUserData) // { // vehicle->getRigidDynamicActor()->userData = actorUserData; // actorUserData->vehicle = vehicle; // } // // if (shapeUserDatas) // { // PxShape* shapes[PX_MAX_NB_WHEELS + 1]; // vehicle->getRigidDynamicActor()->getShapes(shapes, PX_MAX_NB_WHEELS + 1); // for (PxU32 i = 0; i < vehicle->mWheelsSimData.getNbWheels(); i++) // { // const PxI32 shapeId = vehicle->mWheelsSimData.getWheelShapeMapping(i); // shapes[shapeId]->userData = &shapeUserDatas[i]; // shapeUserDatas[i].isWheel = true; // shapeUserDatas[i].wheelId = i; // } // } //} PxVehicleDrive4W* createVehicle4W(const VehicleDesc& vehicle4WDesc, PxPhysics* physics, PxCooking* cooking) { const PxVec3 chassisDims = vehicle4WDesc.chassisDims; const PxF32 wheelWidth = vehicle4WDesc.wheelWidth; const PxF32 wheelRadius = vehicle4WDesc.wheelRadius; const PxU32 numWheels = vehicle4WDesc.numWheels; const PxFilterData& chassisSimFilterData = vehicle4WDesc.chassisSimFilterData; const PxFilterData& wheelSimFilterData = vehicle4WDesc.wheelSimFilterData; //Construct a physx actor with shapes for the chassis and wheels. //Set the rigid body mass, moment of inertia, and center of mass offset. PxRigidDynamic* veh4WActor = NULL; { //Construct a convex mesh for a cylindrical wheel. PxConvexMesh* wheelMesh = createWheelMesh(wheelWidth, wheelRadius, *physics, *cooking); //Assume all wheels are identical for simplicity. PxConvexMesh* wheelConvexMeshes[PX_MAX_NB_WHEELS]; PxMaterial* wheelMaterials[PX_MAX_NB_WHEELS]; //Set the meshes and materials for the driven wheels. for (PxU32 i = PxVehicleDrive4WWheelOrder::eFRONT_LEFT; i <= PxVehicleDrive4WWheelOrder::eREAR_RIGHT; i++) { wheelConvexMeshes[i] = wheelMesh; wheelMaterials[i] = vehicle4WDesc.wheelMaterial; } //Set the meshes and materials for the non-driven wheels for (PxU32 i = PxVehicleDrive4WWheelOrder::eREAR_RIGHT + 1; i < numWheels; i++) { wheelConvexMeshes[i] = wheelMesh; wheelMaterials[i] = vehicle4WDesc.wheelMaterial; } //Chassis just has a single convex shape for simplicity. PxConvexMesh* chassisConvexMesh = createChassisMesh(chassisDims, *physics, *cooking); PxConvexMesh* chassisConvexMeshes[1] = { chassisConvexMesh }; PxMaterial* chassisMaterials[1] = { vehicle4WDesc.chassisMaterial }; //Rigid body data. PxVehicleChassisData rigidBodyData; rigidBodyData.mMOI = vehicle4WDesc.chassisMOI; rigidBodyData.mMass = vehicle4WDesc.chassisMass; rigidBodyData.mCMOffset = vehicle4WDesc.chassisCMOffset; veh4WActor = createVehicleActor (rigidBodyData, wheelMaterials, wheelConvexMeshes, numWheels, wheelSimFilterData, chassisMaterials, chassisConvexMeshes, 1, chassisSimFilterData, *physics); } //Set up the sim data for the wheels. PxVehicleWheelsSimData* wheelsSimData = PxVehicleWheelsSimData::allocate(numWheels); { //Compute the wheel center offsets from the origin. PxVec3 wheelCenterActorOffsets[PX_MAX_NB_WHEELS]; const PxF32 frontZ = chassisDims.z * 0.3f; const PxF32 rearZ = -chassisDims.z * 0.3f; computeWheelCenterActorOffsets4W(frontZ, rearZ, chassisDims, wheelWidth, wheelRadius, numWheels, wheelCenterActorOffsets); //Set up the simulation data for all wheels. setupWheelsSimulationData (vehicle4WDesc.wheelMass, vehicle4WDesc.wheelMOI, wheelRadius, wheelWidth, numWheels, wheelCenterActorOffsets, vehicle4WDesc.chassisCMOffset, vehicle4WDesc.chassisMass, wheelsSimData); } //Set up the sim data for the vehicle drive model. PxVehicleDriveSimData4W driveSimData; { //Diff PxVehicleDifferential4WData diff; //diff.mType = PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD; diff.mType = PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_FRONTWD; driveSimData.setDiffData(diff); //Engine PxVehicleEngineData engine; engine.mPeakTorque = 500.0f; engine.mMaxOmega = 600.0f;//approx 6000 rpm driveSimData.setEngineData(engine); //Gears PxVehicleGearsData gears; gears.mSwitchTime = 0.5f; driveSimData.setGearsData(gears); //Clutch PxVehicleClutchData clutch; clutch.mStrength = 10.0f; driveSimData.setClutchData(clutch); //Ackermann steer accuracy PxVehicleAckermannGeometryData ackermann; ackermann.mAccuracy = 1.0f; ackermann.mAxleSeparation = wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_LEFT).z - wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_LEFT).z; ackermann.mFrontWidth = wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_RIGHT).x - wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_LEFT).x; ackermann.mRearWidth = wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_RIGHT).x - wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_LEFT).x; driveSimData.setAckermannGeometryData(ackermann); } //Create a vehicle from the wheels and drive sim data. PxVehicleDrive4W* vehDrive4W = PxVehicleDrive4W::allocate(numWheels); vehDrive4W->setup(physics, veh4WActor, *wheelsSimData, driveSimData, numWheels - 4); //Configure the userdata //configureUserData(vehDrive4W, vehicle4WDesc.actorUserData, vehicle4WDesc.shapeUserDatas); //Free the sim data because we don't need that any more. wheelsSimData->free(); return vehDrive4W; } PxFilterFlags VehicleFilterShader (PxFilterObjectAttributes attributes0, PxFilterData filterData0, PxFilterObjectAttributes attributes1, PxFilterData filterData1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize) { PX_UNUSED(attributes0); PX_UNUSED(attributes1); PX_UNUSED(constantBlock); PX_UNUSED(constantBlockSize); if ((0 == (filterData0.word0 & filterData1.word1)) && (0 == (filterData1.word0 & filterData0.word1))) return PxFilterFlag::eSUPPRESS; pairFlags = PxPairFlag::eCONTACT_DEFAULT; pairFlags |= PxPairFlags(PxU16(filterData0.word2 | filterData1.word2)); return PxFilterFlags(); } static void InitPhysics() { s_foundation = PxCreateFoundation(PX_PHYSICS_VERSION, gDefaultAllocatorCallback, gDefaultErrorCallback); if (!s_foundation) exit(1); bool recordMemoryAllocations = false; s_physics = PxCreatePhysics(PX_PHYSICS_VERSION, *s_foundation, PxTolerancesScale(), recordMemoryAllocations, nullptr); if (!s_physics) exit(2); s_cooking = PxCreateCooking(PX_PHYSICS_VERSION, *s_foundation, PxCookingParams(PxTolerancesScale())); if (!s_cooking) exit(3); PxSceneDesc sceneDesc(s_physics->getTolerancesScale()); sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f); // create CPU dispatcher which mNbThreads worker threads s_cpu_dispatcher = PxDefaultCpuDispatcherCreate(1); if (!s_cpu_dispatcher) exit(3); sceneDesc.cpuDispatcher = s_cpu_dispatcher; sceneDesc.filterShader = VehicleFilterShader; //if (!sceneDesc.filterShader) // sceneDesc.filterShader = &PxDefaultSimulationFilterShader; s_scene = s_physics->createScene(sceneDesc); if (!s_scene) exit(4); auto m_scene = s_scene; bool enable = true; m_scene->setVisualizationParameter(PxVisualizationParameter::eSCALE, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eACTOR_AXES, enable ? 2.0f : 0.0f); ////m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_EDGES, enable ? 1.0f : 0.0f); ////m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_COMPOUNDS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AABBS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eMBP_REGIONS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eACTOR_AXES, enable ? 0.5f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_ANG_VELOCITY, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_AXES, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_LIN_VELOCITY, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_MASS_AXES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AABBS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AXES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_COMPOUNDS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_DYNAMIC, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_EDGES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_FNORMALS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_SHAPES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_STATIC, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_ERROR, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_FORCE, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_NORMAL, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_POINT, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCULL_BOX, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eFORCE_DWORD, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LIMITS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LOCAL_FRAMES, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eWORLD_AXES, enable ? 1.0f : 0.0f); PxShape* shape; auto floor_material = s_physics->createMaterial(1.0f, 1.0f, 0.0f); s_material = s_physics->createMaterial(0.5f, 0.5f, 0.6f); //auto floor = PxCreatePlane(*s_physics, PxPlane(PxVec3(0.f, 1.f, 0.f), 0.f), *floor_material); //floor->getShapes(&shape, 1); //SetupFiltering(shape, CG_FLOOR, CG_BOX | CG_FLOOR, DRIVABLE_SURFACE); //s_scene->addActor(*floor); //s_box1 = PxCreateDynamic(*s_physics, PxTransform(PxVec3(0.f, 5.0f, 0.f)), PxBoxGeometry(0.5f, 0.5f, 0.5f), *s_material, 1.f); //s_box1->getShapes(&shape, 1); //SetupFiltering(shape, CG_BOX, CG_FLOOR, DRIVABLE_SURFACE); //s_scene->addActor(*s_box1); PxInitVehicleSDK(*s_physics); PxVehicleSetBasisVectors(PxVec3(0, 1, 0), PxVec3(0, 0, 1)); PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE); //Create the batched scene queries for the suspension raycasts. gVehicleSceneQueryData = VehicleSceneQueryData::allocate(1, PX_MAX_NB_WHEELS, 1, 1, WheelSceneQueryPreFilterBlocking, NULL, gDefaultAllocatorCallback); gBatchQuery = VehicleSceneQueryData::setUpBatchedSceneQuery(0, *gVehicleSceneQueryData, s_scene); //Create the friction table for each combination of tire and surface type. gFrictionPairs = createFrictionPairs(s_material); //Create a plane to drive on. PxFilterData groundPlaneSimFilterData(COLLISION_FLAG_GROUND, COLLISION_FLAG_GROUND_AGAINST, 0, 0); auto floor = createDrivablePlane(groundPlaneSimFilterData, s_material, s_physics); s_scene->addActor(*floor); //Create a vehicle that will drive on the plane. VehicleDesc vehicleDesc = initVehicleDesc(); gVehicle4W = createVehicle4W(vehicleDesc, s_physics, s_cooking); PxTransform startTransform(PxVec3(0, (vehicleDesc.chassisDims.y * 0.5f + vehicleDesc.wheelRadius + 1.0f) + 2.0, 0), PxQuat(PxIdentity)); gVehicle4W->getRigidDynamicActor()->setGlobalPose(startTransform); s_scene->addActor(*gVehicle4W->getRigidDynamicActor()); //Set the vehicle to rest in first gear. //Set the vehicle to use auto-gears. gVehicle4W->setToRestState(); gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST); gVehicle4W->mDriveDynData.setUseAutoGears(true); } //PxVehicleKeySmoothingData gKeySmoothingData = //{ // { // 6.0f, //rise rate eANALOG_INPUT_ACCEL // 6.0f, //rise rate eANALOG_INPUT_BRAKE // 6.0f, //rise rate eANALOG_INPUT_HANDBRAKE // 2.5f, //rise rate eANALOG_INPUT_STEER_LEFT // 2.5f, //rise rate eANALOG_INPUT_STEER_RIGHT // }, // { // 10.0f, //fall rate eANALOG_INPUT_ACCEL // 10.0f, //fall rate eANALOG_INPUT_BRAKE // 10.0f, //fall rate eANALOG_INPUT_HANDBRAKE // 5.0f, //fall rate eANALOG_INPUT_STEER_LEFT // 5.0f //fall rate eANALOG_INPUT_STEER_RIGHT // } //}; PxVehicleKeySmoothingData gKeySmoothingData = { { 4.0f, //rise rate eANALOG_INPUT_ACCEL 10.0f, //rise rate eANALOG_INPUT_BRAKE 6.0f, //rise rate eANALOG_INPUT_HANDBRAKE 5.0f, //rise rate eANALOG_INPUT_STEER_LEFT 5.0f, //rise rate eANALOG_INPUT_STEER_RIGHT }, { 10.0f, //fall rate eANALOG_INPUT_ACCEL 10.0f, //fall rate eANALOG_INPUT_BRAKE 10.0f, //fall rate eANALOG_INPUT_HANDBRAKE 7.0f, //fall rate eANALOG_INPUT_STEER_LEFT 7.0f //fall rate eANALOG_INPUT_STEER_RIGHT } }; //PxF32 gSteerVsForwardSpeedData[2 * 8] = //{ // 0.0f, 0.75f, // 5.0f, 0.75f, // 30.0f, 0.125f, // 120.0f, 0.06f, // PX_MAX_F32, PX_MAX_F32, // PX_MAX_F32, PX_MAX_F32, // PX_MAX_F32, PX_MAX_F32, // PX_MAX_F32, PX_MAX_F32 //}; PxF32 gSteerVsForwardSpeedData[2 * 8] = { 0.0f, 0.75f, 5.0f, 0.35f, 30.0f, 0.06f, 120.0f, 0.02f, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32 }; PxFixedSizeLookupTable<8> gSteerVsForwardSpeedTable(gSteerVsForwardSpeedData, 4); PxVehicleDrive4WRawInputData gVehicleInputData; bool gIsVehicleInAir = true; static TSR::Camera s_cam; static void PhysicsFrame() { auto timestep = 1.0f / 75.0f; //Update the control inputs for the vehicle. //if (gMimicKeyInputs) //{ // PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W); //} //else //{ // PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(gPadSmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W); //} PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W); //Raycasts. PxVehicleWheels* vehicles[1] = { gVehicle4W }; PxRaycastQueryResult* raycastResults = gVehicleSceneQueryData->getRaycastQueryResultBuffer(0); const PxU32 raycastResultsSize = gVehicleSceneQueryData->getQueryResultBufferSize(); PxVehicleSuspensionRaycasts(gBatchQuery, 1, vehicles, raycastResultsSize, raycastResults); //Vehicle update. const PxVec3 grav = s_scene->getGravity(); PxWheelQueryResult wheelQueryResults[PX_MAX_NB_WHEELS]; PxVehicleWheelQueryResult vehicleQueryResults[1] = { {wheelQueryResults, gVehicle4W->mWheelsSimData.getNbWheels()} }; PxVehicleUpdates(timestep, grav, *gFrictionPairs, 1, vehicles, vehicleQueryResults); //Work out if the vehicle is in the air. gIsVehicleInAir = gVehicle4W->getRigidDynamicActor()->isSleeping() ? false : PxVehicleIsInAir(vehicleQueryResults[0]); s_scene->simulate(timestep); s_scene->fetchResults(true); } static glm::vec4 U32ColorToVec4(uint32_t rgba_value) { float red = static_cast((rgba_value >> 24) & 0xFF) / 255.0f; float green = static_cast((rgba_value >> 16) & 0xFF) / 255.0f; float blue = static_cast((rgba_value >> 8) & 0xFF) / 255.0f; float alpha = static_cast(rgba_value & 0xFF) / 255.0f; return glm::vec4(red, green, blue, alpha); } static void DrawPhysxDebug() { const PxRenderBuffer& rb = s_scene->getRenderBuffer(); for(PxU32 i=0; i < rb.getNbPoints(); i++) { const PxDebugPoint& point = rb.getPoints()[i]; // render the point s_draw_points.push_back({ glm::vec3(point.pos.x, point.pos.y, point.pos.z), U32ColorToVec4(point.color) }); } for(PxU32 i=0; i < rb.getNbLines(); i++) { const PxDebugLine& line = rb.getLines()[i]; // render the line s_draw_lines.push_back({ glm::vec3(line.pos0.x, line.pos0.y, line.pos0.z), U32ColorToVec4(line.color0) }); s_draw_lines.push_back({ glm::vec3(line.pos1.x, line.pos1.y, line.pos1.z), U32ColorToVec4(line.color1) }); } } static void ShutdownPhysics() { PxCloseVehicleSDK(); s_physics->release(); s_foundation->release(); } static int s_count = 0; static bool s_first_person = false; int main() { if (!glfwInit()) { std::cout << "Failed to initialize GLFW\n"; return 1; } glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_RESIZABLE, GL_TRUE); glfwWindowHint(GLFW_MAXIMIZED, GL_TRUE); glfwWindowHint(GLFW_DEPTH_BITS, 0); //glfwWindowHint(GLFW_DEPTH_BITS, 0); glfwWindowHint(GLFW_STENCIL_BITS, 0); glfwWindowHint(GLFW_VISIBLE, GLFW_FALSE); //GLFWwindow* window = glfwCreateWindow(1920, 1080, "Karo", glfwGetPrimaryMonitor(), NULL); GLFWwindow* window = glfwCreateWindow(800, 600, "Karo", NULL, NULL); if (!window) { std::cerr << "Failed to create window\n"; glfwTerminate(); return 1; } glfwMakeContextCurrent(window); if (glewInit() != GLEW_OK) { std::cerr << "Failed to initialize GLEW\n"; glfwTerminate(); return 1; } std::cout << "OpenGL version: " << glGetString(GL_VERSION) << std::endl; GLuint shader; shader = glCreateProgram(); GLuint vs = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vs, 1, &s_vs_src, NULL); glCompileShader(vs); CheckShaderCompileErrors(vs); GLuint fs = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fs, 1, &s_fs_src, NULL); glCompileShader(fs); CheckShaderCompileErrors(fs); glAttachShader(shader, vs); glAttachShader(shader, fs); glLinkProgram(shader); CheckProgramLinkErrors(shader); glDeleteShader(vs); glDeleteShader(fs); glUseProgram(shader); GLuint u_mvp = glGetUniformLocation(shader, "u_mvp"); GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); //setup for stream draw glBufferData(GL_ARRAY_BUFFER, 0, NULL, GL_STREAM_DRAW); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, pos)); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, color)); glBindVertexArray(0); //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glfwShowWindow(window); InitPhysics(); glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods) { if (action != GLFW_PRESS) return; switch (key) { case GLFW_KEY_ESCAPE: glfwSetWindowShouldClose(window, true); break; //case GLFW_KEY_SPACE: // s_box1->addForce(PxVec3(0.0f, 100.0f, 0.0f)); // break; case GLFW_KEY_E: //for (int i = 0; i < 1; i++) { // auto newbox = PxCreateDynamic(*s_physics, PxTransform(PxVec3(0.f, 5.0f * i, 0.f)), PxBoxGeometry(0.5f, 0.5f, 0.5f), *s_material, 1.f); // PxShape* shape; // newbox->getShapes(&shape, 1); // //SetupFiltering(shape, CG_BOX, CG_FLOOR | CG_BOX, 0); // s_scene->addActor(*newbox); // s_count++; //} break; case GLFW_KEY_W: printf("pocet: %d\n", s_count); break; case GLFW_KEY_V: s_first_person = !s_first_person; break; default: break; } }); glfwSetCursorPosCallback(window, [](GLFWwindow* window, double x, double y) { static double prev_x = x; static double prev_y = y; s_cam.ProcessMouse(x - prev_x, prev_y - y); prev_x = x; prev_y = y; }); //glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); auto KeyDown = [window](int key) { return glfwGetKey(window, key) == GLFW_PRESS; }; glfwSwapInterval(1); // Setup Dear ImGui context IMGUI_CHECKVERSION(); ImGui::CreateContext(); ImGuiIO& io = ImGui::GetIO(); (void)io; io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard; // Enable Keyboard Controls io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad; // Enable Gamepad Controls // Setup Dear ImGui style ImGui::StyleColorsDark(); //ImGui::StyleColorsLight(); // Setup Platform/Renderer backends ImGui_ImplGlfw_InitForOpenGL(window, true); ImGui_ImplOpenGL3_Init("#version 130"); while (!glfwWindowShouldClose(window)) { glfwPollEvents(); // Start the Dear ImGui frame ImGui_ImplOpenGL3_NewFrame(); ImGui_ImplGlfw_NewFrame(); ImGui::NewFrame(); int width, height; glfwGetFramebufferSize(window, &width, &height); glViewport(0, 0, width, height); auto pos = gVehicle4W->getRigidDynamicActor()->getGlobalPose().p; glm::vec3 pos_glm(pos.x, pos.y + 2.0f, pos.z); glm::mat4 proj = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 1000.0f); //glm::mat4 view = glm::lookAt(glm::vec3(1.0f, 10.0f, 20.0f) * 5.0f /*pos_glm*/, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 view; if (!s_first_person) { s_cam.position = pos_glm; s_cam.third_person_distance = 15.0f; view = s_cam.GetViewMatrix(); } else { //auto trans = gVehicle4W->getRigidDynamicActor()->getGlobalPose(); auto actor = gVehicle4W->getRigidDynamicActor(); PxShape* shapes[8]; actor->getShapes(shapes, 8); PxMat44 trans_mat = PxShapeExt::getGlobalPose(*shapes[4], *actor); auto fd = shapes[4]->getSimulationFilterData(); glm::mat4& trans = *((glm::mat4*)(&trans_mat)); // //shapes[0]->getLocalPose // //glm::vec3 position(trans.p.x, trans.p.y, trans.p.z); //glm::quat rotation(trans.q.x, trans.q.y, trans.q.z, trans.q.w); //glm::mat4 rotationMatrix = glm::mat4_cast(rotation); //// Step 2: Create translation matrix //glm::mat4 translationMatrix = glm::translate(glm::mat4(1.0f), position); //// Step 3: Combine rotation and translation to get the final transformation matrix //glm::mat4 transformationMatrix = translationMatrix * rotationMatrix; s_cam.position = glm::vec3(0.0f); //s_cam.up_vector.y = -1.0f; view = s_cam.GetViewMatrix(true) * glm::inverse(trans); } auto& dyndata = gVehicle4W->mDriveDynData; /*gVehicle4W->computeForwardSpeed()*/ //printf("e: %9.2f g: %u\n", , dyndata.getCurrentGear()); auto speed = gVehicle4W->computeForwardSpeed() * 3.6f; auto enginespeed = dyndata.getEngineRotationSpeed() / (PxPi * 2.0) * 60.0f; auto gear = (int)dyndata.getCurrentGear(); auto dist = glm::length(pos_glm); static const char* gearname[] = { "R", "N", "1", "2", "3", "4", "5" }; ImGui::Begin("state"); ImGui::Text("dist: %.1f m", dist); ImGui::Text("speed: %.1f km/h", speed); ImGui::Text("rpm: %.1f", enginespeed); ImGui::ProgressBar(enginespeed / 6000.0f); ImGui::SliderInt("gear", &gear, 0, 6, gearname[gear]); ImGui::End(); ImGui::ShowDemoWindow(); glm::mat4 mvp = proj * view; glUniformMatrix4fv(u_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); //// test data //s_draw_verts.push_back({ glm::vec3(-1, 0, 0), glm::vec3(1.0f, 0.0f, 0.0f) }); //s_draw_verts.push_back({ glm::vec3(1, 0, 0), glm::vec3(0.0f, 1.0f, 0.0f) }); gVehicleInputData.setDigitalAccel(KeyDown(GLFW_KEY_W)); gVehicleInputData.setDigitalSteerLeft(KeyDown(GLFW_KEY_D)); gVehicleInputData.setDigitalSteerRight(KeyDown(GLFW_KEY_A)); gVehicleInputData.setDigitalBrake(KeyDown(GLFW_KEY_S)); gVehicleInputData.setDigitalHandbrake(KeyDown(GLFW_KEY_SPACE)); gVehicleInputData.setGearUp(KeyDown(GLFW_KEY_R)); gVehicleInputData.setGearDown(KeyDown(GLFW_KEY_F)); auto grid_center = glm::floor(s_cam.position * 0.2f) * 5.0f; grid_center.y = 0.0f; for (int i = -50; i <= 50; i++) { s_draw_lines.push_back({ grid_center + glm::vec3(-250.0f, 0.0f, i * 5.0f), glm::vec4(0.5f, 0.5f, 0.5f, 1.0f)}); s_draw_lines.push_back({ grid_center + glm::vec3(250.0f, 0.0f, i * 5.0f), glm::vec4(0.5f, 0.5f, 0.5f, 1.0f) }); } for (int i = -50; i <= 50; i++) { s_draw_lines.push_back({ grid_center + glm::vec3(i * 5.0f, 0.0f, -250.0f), glm::vec4(0.5f, 0.5f, 0.5f, 1.0f) }); s_draw_lines.push_back({ grid_center + glm::vec3(i * 5.0f, 0.0f, 250.0f), glm::vec4(0.5f, 0.5f, 0.5f, 1.0f) }); } PhysicsFrame(); DrawPhysxDebug(); glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, s_draw_lines.size() * sizeof(Vertex), s_draw_lines.data(), GL_STREAM_DRAW); glDrawArrays(GL_LINES, 0, s_draw_lines.size()); //glBufferData(GL_ARRAY_BUFFER, s_draw_points.size() * sizeof(Vertex), s_draw_points.data(), GL_STREAM_DRAW); //glDrawArrays(GL_POINTS, 0, s_draw_points.size()); s_draw_lines.clear(); s_draw_points.clear(); ImGui::Render(); ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData()); glfwSwapBuffers(window); } ShutdownPhysics(); } // Run program: Ctrl + F5 or Debug > Start Without Debugging menu // Debug program: F5 or Debug > Start Debugging menu // Tips for Getting Started: // 1. Use the Solution Explorer window to add/manage files // 2. Use the Team Explorer window to connect to source control // 3. Use the Output window to see build output and other messages // 4. Use the Error List window to view errors // 5. Go to Project > Add New Item to create new code files, or Project > Add Existing Item to add existing code files to the project // 6. In the future, to open this project again, go to File > Open > Project and select the .sln file