// karo.cpp : This file contains the 'main' function. Program execution begins and ends there. // //#define GLEW_STATIC #include #include #include #include #include #include #include #include //#include #include #include //#include using namespace physx; struct Vertex { glm::vec3 pos; glm::vec3 color; }; static const char* s_vs_src = R"GLSL( #version 330 core layout (location = 0) in vec3 a_pos; layout (location = 1) in vec3 a_color; out vec3 u_color; uniform mat4 u_mvp; void main() { gl_Position = u_mvp * vec4(a_pos, 1.0); u_color = a_color; } )GLSL"; static const char* s_fs_src = R"GLSL( #version 330 core in vec3 u_color; out vec4 o_color; void main() { o_color = vec4(u_color, 1.0); } )GLSL"; static void CheckShaderCompileErrors(GLuint shader) { GLint success; GLchar infoLog[512]; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(shader, 512, NULL, infoLog); std::cerr << "Shader compilation failed: " << infoLog << std::endl; exit(1); } } static void CheckProgramLinkErrors(GLuint program) { GLint success; GLchar infoLog[512]; glGetProgramiv(program, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(program, 512, NULL, infoLog); std::cerr << "Program link failed: " << infoLog << std::endl; exit(1); } } enum ContactGroup { CG_NONE = 0, CG_BOX = (1 << 1), CG_FLOOR = (1 << 2), }; PxFilterFlags FilterShaderExample( PxFilterObjectAttributes attributes0, PxFilterData filterData0, PxFilterObjectAttributes attributes1, PxFilterData filterData1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize) { // let triggers through if (PxFilterObjectIsTrigger(attributes0) || PxFilterObjectIsTrigger(attributes1)) { pairFlags = PxPairFlag::eTRIGGER_DEFAULT; return PxFilterFlag::eDEFAULT; } // generate contacts for all that were not filtered above pairFlags = PxPairFlag::eCONTACT_DEFAULT; // trigger the contact callback for pairs (A,B) where // the filtermask of A contains the ID of B and vice versa. if ((filterData0.word0 & filterData1.word1) && (filterData1.word0 & filterData0.word1)) { pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND; return PxFilterFlag::eDEFAULT; } return PxFilterFlag::eSUPPRESS; } void SetupFiltering(PxShape* shape, PxU32 filterGroup, PxU32 filterMask) { PxFilterData filterData; filterData.word0 = filterGroup; // word0 = own ID filterData.word1 = filterMask; // word1 = ID mask to filter pairs that trigger a contact callback shape->setSimulationFilterData(filterData); } static std::vector s_draw_lines; static std::vector s_draw_points; static PxDefaultErrorCallback gDefaultErrorCallback; static PxDefaultAllocator gDefaultAllocatorCallback; static PxFoundation* s_foundation; static PxPhysics* s_physics; static PxScene* s_scene; static PxDefaultCpuDispatcher* s_cpu_dispatcher; static PxMaterial* s_material; static PxRigidDynamic* s_box1; static void InitPhysics() { s_foundation = PxCreateFoundation(PX_PHYSICS_VERSION, gDefaultAllocatorCallback, gDefaultErrorCallback); if (!s_foundation) exit(1); bool recordMemoryAllocations = false; s_physics = PxCreatePhysics(PX_PHYSICS_VERSION, *s_foundation, PxTolerancesScale(), recordMemoryAllocations, nullptr); if (!s_physics) exit(2); PxSceneDesc sceneDesc(s_physics->getTolerancesScale()); sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f); // create CPU dispatcher which mNbThreads worker threads s_cpu_dispatcher = PxDefaultCpuDispatcherCreate(1); if (!s_cpu_dispatcher) exit(3); sceneDesc.cpuDispatcher = s_cpu_dispatcher; sceneDesc.filterShader = &FilterShaderExample; //if (!sceneDesc.filterShader) // sceneDesc.filterShader = &PxDefaultSimulationFilterShader; s_scene = s_physics->createScene(sceneDesc); if (!s_scene) exit(4); auto m_scene = s_scene; bool enable = true; m_scene->setVisualizationParameter(PxVisualizationParameter::eSCALE, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eACTOR_AXES, enable ? 2.0f : 0.0f); ////m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_EDGES, enable ? 1.0f : 0.0f); ////m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_COMPOUNDS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AABBS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eMBP_REGIONS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eACTOR_AXES, enable ? 0.5f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_ANG_VELOCITY, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_AXES, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_LIN_VELOCITY, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eBODY_MASS_AXES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AABBS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_AXES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_COMPOUNDS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_DYNAMIC, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_EDGES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_FNORMALS, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_SHAPES, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCOLLISION_STATIC, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_ERROR, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_FORCE, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_NORMAL, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eCONTACT_POINT, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eCULL_BOX, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eFORCE_DWORD, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LIMITS, enable ? 1.0f : 0.0f); //m_scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LOCAL_FRAMES, enable ? 1.0f : 0.0f); m_scene->setVisualizationParameter(PxVisualizationParameter::eWORLD_AXES, enable ? 1.0f : 0.0f); PxShape* shape; auto floor_material = s_physics->createMaterial(1.0f, 1.0f, 0.0f); s_material = s_physics->createMaterial(1.0f, 1.0f, 0.6f); auto floor = PxCreatePlane(*s_physics, PxPlane(PxVec3(0.f, 1.f, 0.f), 0.f), *floor_material); floor->getShapes(&shape, 1); SetupFiltering(shape, CG_FLOOR, CG_BOX | CG_FLOOR); s_scene->addActor(*floor); s_box1 = PxCreateDynamic(*s_physics, PxTransform(PxVec3(0.f, 5.0f, 0.f)), PxBoxGeometry(0.5f, 0.5f, 0.5f), *s_material, 1.f); s_box1->getShapes(&shape, 1); SetupFiltering(shape, CG_BOX, CG_FLOOR); s_scene->addActor(*s_box1); } static void PhysicsFrame() { s_scene->simulate(1.0f / 60.0f); s_scene->fetchResults(true); } static glm::vec4 U32ColorToVec4(uint32_t rgba_value) { float red = static_cast((rgba_value >> 24) & 0xFF) / 255.0f; float green = static_cast((rgba_value >> 16) & 0xFF) / 255.0f; float blue = static_cast((rgba_value >> 8) & 0xFF) / 255.0f; float alpha = static_cast(rgba_value & 0xFF) / 255.0f; return glm::vec4(red, green, blue, alpha); } static void DrawPhysxDebug() { const PxRenderBuffer& rb = s_scene->getRenderBuffer(); for(PxU32 i=0; i < rb.getNbPoints(); i++) { const PxDebugPoint& point = rb.getPoints()[i]; // render the point s_draw_points.push_back({ glm::vec3(point.pos.x, point.pos.y, point.pos.z), U32ColorToVec4(point.color) }); } for(PxU32 i=0; i < rb.getNbLines(); i++) { const PxDebugLine& line = rb.getLines()[i]; // render the line s_draw_lines.push_back({ glm::vec3(line.pos0.x, line.pos0.y, line.pos0.z), U32ColorToVec4(line.color0) }); s_draw_lines.push_back({ glm::vec3(line.pos1.x, line.pos1.y, line.pos1.z), U32ColorToVec4(line.color1) }); } } static void ShutdownPhysics() { s_physics->release(); s_foundation->release(); } static int s_count = 0; int main() { if (!glfwInit()) { std::cout << "Failed to initialize GLFW\n"; return 1; } glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_RESIZABLE, GL_TRUE); glfwWindowHint(GLFW_MAXIMIZED, GL_TRUE); glfwWindowHint(GLFW_DEPTH_BITS, 0); //glfwWindowHint(GLFW_DEPTH_BITS, 0); glfwWindowHint(GLFW_STENCIL_BITS, 0); glfwWindowHint(GLFW_VISIBLE, GLFW_FALSE); //GLFWwindow* window = glfwCreateWindow(1920, 1080, "Karo", glfwGetPrimaryMonitor(), NULL); GLFWwindow* window = glfwCreateWindow(800, 600, "Karo", NULL, NULL); if (!window) { std::cerr << "Failed to create window\n"; glfwTerminate(); return 1; } glfwMakeContextCurrent(window); if (glewInit() != GLEW_OK) { std::cerr << "Failed to initialize GLEW\n"; glfwTerminate(); return 1; } std::cout << "OpenGL version: " << glGetString(GL_VERSION) << std::endl; GLuint shader; shader = glCreateProgram(); GLuint vs = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vs, 1, &s_vs_src, NULL); glCompileShader(vs); CheckShaderCompileErrors(vs); GLuint fs = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fs, 1, &s_fs_src, NULL); glCompileShader(fs); CheckShaderCompileErrors(fs); glAttachShader(shader, vs); glAttachShader(shader, fs); glLinkProgram(shader); CheckProgramLinkErrors(shader); glDeleteShader(vs); glDeleteShader(fs); glUseProgram(shader); GLuint u_mvp = glGetUniformLocation(shader, "u_mvp"); GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); //setup for stream draw glBufferData(GL_ARRAY_BUFFER, 0, NULL, GL_STREAM_DRAW); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, pos)); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, color)); glBindVertexArray(0); //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glfwShowWindow(window); InitPhysics(); glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods) { if (action != GLFW_PRESS) return; switch (key) { case GLFW_KEY_ESCAPE: glfwSetWindowShouldClose(window, true); break; case GLFW_KEY_SPACE: s_box1->addForce(PxVec3(0.0f, 100.0f, 0.0f)); break; case GLFW_KEY_E: for (int i = 0; i < 1; i++) { auto newbox = PxCreateDynamic(*s_physics, PxTransform(PxVec3(0.f, 5.0f * i, 0.f)), PxBoxGeometry(0.5f, 0.5f, 0.5f), *s_material, 1.f); PxShape* shape; newbox->getShapes(&shape, 1); SetupFiltering(shape, CG_BOX, CG_FLOOR | CG_BOX); s_scene->addActor(*newbox); s_count++; } break; case GLFW_KEY_W: printf("pocet: %d\n", s_count); break; } }); glfwSwapInterval(1); while (!glfwWindowShouldClose(window)) { glfwPollEvents(); int width, height; glfwGetFramebufferSize(window, &width, &height); glViewport(0, 0, width, height); glm::mat4 proj = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 1000.0f); glm::mat4 view = glm::lookAt(glm::vec3(1.0f, 10.0f, 20.0f) * 1.0f, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 mvp = proj * view; glUniformMatrix4fv(u_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); //// test data //s_draw_verts.push_back({ glm::vec3(-1, 0, 0), glm::vec3(1.0f, 0.0f, 0.0f) }); //s_draw_verts.push_back({ glm::vec3(1, 0, 0), glm::vec3(0.0f, 1.0f, 0.0f) }); PhysicsFrame(); DrawPhysxDebug(); glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, s_draw_lines.size() * sizeof(Vertex), s_draw_lines.data(), GL_STREAM_DRAW); glDrawArrays(GL_LINES, 0, s_draw_lines.size()); //glBufferData(GL_ARRAY_BUFFER, s_draw_points.size() * sizeof(Vertex), s_draw_points.data(), GL_STREAM_DRAW); //glDrawArrays(GL_POINTS, 0, s_draw_points.size()); s_draw_lines.clear(); s_draw_points.clear(); glfwSwapBuffers(window); } ShutdownPhysics(); } // Run program: Ctrl + F5 or Debug > Start Without Debugging menu // Debug program: F5 or Debug > Start Debugging menu // Tips for Getting Started: // 1. Use the Solution Explorer window to add/manage files // 2. Use the Team Explorer window to connect to source control // 3. Use the Output window to see build output and other messages // 4. Use the Error List window to view errors // 5. Go to Project > Add New Item to create new code files, or Project > Add Existing Item to add existing code files to the project // 6. In the future, to open this project again, go to File > Open > Project and select the .sln file